
WP365 (v1.2) July 30, 2012 www.xilinx.com 1

© 2010–2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

While design security is often thought of in terms of
protecting intellectual property (IP), the potential
losses extend beyond just the financial. With the
expansion of the use of programmable logic beyond
commercial markets to avionic and military
applications, design security takes on the additional
aspects of safety and national security.

Solutions for protecting application data during
transmission and storage are well known, but much
less attention has been paid to FPGA design
security—that is, protecting the FPGA configuration
data.

This white paper describes the various threats to
design security and the solutions offered by modern
FPGAs.

White Paper: FPGAs

WP365 (v1.2) July 30, 2012

Solving Today's
Design Security Concerns

By: Steven McNeil

http://www.xilinx.com

2 www.xilinx.com WP365 (v1.2) July 30, 2012

Introduction

Introduction
Today's global marketplace has opened up not only new opportunities but new
threats as well. These threats range from counterfeiting to espionage and are faced by
corporations and governments alike. These threats can have far-reaching
consequences well beyond the financial well-being of a corporation; they can also
impact personal safety.

The goals of those making these threats can range from purely financial—a simple
desire to reap profits without making the investment in the initial design effort—to
more sinister aspects of governments attempting both to learn the capabilities of
others’ systems and to use the knowledge gained to kick-start their own development
projects. Given their growing sophistication, there is also the potential of terrorists
attempting to exploit weaknesses in design security.

With our global market, commercial products can be obtained easily, either by
legitimate means or simply by theft. Military devices can be obtained through
espionage, by the capture of equipment on the battlefield, or even when smart
ordinance fails to detonate. This ease of access means that everyone must take design
security seriously.

Moreover, with the ever-expanding usage of FPGAs in products and systems of all
kinds, FPGAs often form the core of any system. This rise in both the usage and
importance of FPGAs in a system make protecting the IP contained in FPGAs as
important as protecting the data processed by the FPGA.

Note: There is an additional aspect to design security that extends beyond protecting the
IP contained in an FPGA: protecting the data being processed by the FPGA. This aspect of
design security is beyond the scope of this white paper. For a discussion of secure design
using Xilinx® FPGAs, see FPGA-Based Single Chip Cryptographic Solution. [Ref 1]

As awareness of security threats has grown, the security community in the U.S. has
responded with a set of policies and standards that are often the driving force behind
design security:

• DoD IA – The Department of Defense (DoD) information assurance (IA)—or,
more properly, cyber, identity, and information assurance (CIIA)—is a set of policies,
standards, and practices set forth to protect and defend defense information and
information systems. One of the goals of the strategy is to protect “trusted data
and platforms” and applies to hardware.

• DoD/DoDD 5200 – DoD Directive 5200.1-M, Acquisition Systems Protection
Program, is a manual prescribing standards, criteria, and methodologies to protect
against loss and unauthorized disclosure of essential program information,
technologies, and/or systems (EPITS). It is this directive that drives the development
of anti-tamper capabilities for DoD programs.

• FIPS – Federal Information Processing Standards (FIPS) are issued by the
National Institute of Standards and Technology (NIST) for use by all non-defense
government agencies and contractors. [Ref 2][Ref 3][Ref 4][Ref 5]

The methods and solutions covered by this white paper are critical for meeting the
requirements of these initiatives.

http://www.xilinx.com

The Threats

WP365 (v1.2) July 30, 2012 www.xilinx.com 3

The Threats
There are a range of threats to design security, each threat with its own implications.
Some are threats to the financial interests of a company, while other can threaten
personal or even national security.

Reverse Engineering
Taking an existing product, third parties can probe a design by looking at the layout,
the devices used, downloading the firmware, and analyzing the interaction between
devices. Using this information, the offenders hope to reconstruct the design, with the
goal of using that information to produce their own competing products or assist their
future product development. Governments can use this information to either develop
effective countermeasures or to produce similar equipment.

Cloning
In cloning, the actors (often a criminal enterprise) do not attempt to fully understand
and deconstruct the design. The goal is simply to build copies of an existing product,
essentially a counterfeit that can then be sold for a greater profit than had the actor
gone through the time and expense of product development and marketing. Since the
offender is less likely to spend money on quality components and quality assurance,
the resulting products can harm the corporate image as well as its finances.

A more severe impact occurs when cloning is used to produce counterfeit products
destined for high-reliability applications—for example, in aviation. The intent might
not necessarily be sinister, but a low-quality product can impact flight safety.

Overbuilding
The easiest form of design theft is overbuilding. With the growth in outsourcing, an
original equipment manufacturer (OEM) often relies on a network of off-shore
contractors to manufacture its products. As a consequence, an unscrupulous
subcontractor could build extra units beyond that ordered by the OEM. Although
legally this is a form of counterfeiting, the units produced are identical to the originals,
making discovery difficult.

Tampering
When an outside agent attempts to gain unauthorized access to an electronic system,
it is referred to as tampering. Tampering can either be part of a reverse engineering
program, or it can have a goal that is malicious or criminal in nature. For example, an
actor can try to extract operating data or firmware, or can try to modify firmware in a
system in an attempt to compromise or shut down the system.

http://www.xilinx.com

4 www.xilinx.com WP365 (v1.2) July 30, 2012

The Weaknesses

The Weaknesses
There are several ways that systems can be vulnerable to external attacks.

Complacency
Probably the largest vulnerability is simple complacency on the part of design teams
and companies. Companies can fail to consider design security due either to a lack of
time or to the belief that legal protection should be sufficient. As a result, design
security is not considered, and only minimal steps are taken to protect the company's
valuable intellectual property.

Complacency can be fought through education and the recognition that, while legal
protection exists, it is a long and expensive route, necessarily undertaken long after
the damage has been done.

Incomplete Security Measures
Another area of vulnerability is incomplete security measures. For example, a
company could implement an anti-tamper detection scheme in a system containing an
FPGA to alert end customers to attempted tampering—but if the security measures do
not extend to encrypting FPGA bitstreams, then the system is still vulnerable to
reverse engineering threats.

Moreover, attention must be paid not just at the device or FPGA level, but at the board
and system levels as well, considering potential threats at each level. Clearly, designs
need to be thoroughly reviewed to ensure that all aspects of design security are
covered.

Back Doors
Structures implemented in a design to aid in debug can leave security holes.
Analogous to software systems that leave a back door to ease the access of system
administrators, hardware design can have holes as well. For example, if left in the
design, device debug modes/cores could be used to bypass the normal security
and/or anti-tampering measures. While useful during the design phase, such back
doors must be removed from the design before final production.

Design Defects
Defects in the customer design can leave security holes. For example, illegal/untested
states that exist in the design can render it vulnerable. As a result, a design should be
thoroughly tested with illegal states examined before releasing the final design.

Device Defects
Similar to design defects, a device could have manufacturing defects that make it
vulnerable to an attack. Selecting vendors with thorough testing schemes and
advanced quality assurance procedures can greatly minimize this risk.

Single-Event Upsets
Single-event upsets (SEUs) occur when device memory structures have their states
altered due to the impact of high-energy neutrons. Although a remote possibility, an
SEU can alter the functionality of a device, potentially compromising security
structures incorporated into the device. Implementing SEU mitigation techniques not
only neutralizes this possibility but increases system reliability.

http://www.xilinx.com

Attacking an FPGA Design

WP365 (v1.2) July 30, 2012 www.xilinx.com 5

Attacking an FPGA Design
Bitstream Decoding

Once an actor has recovered a bitstream, he can attempt to decode it to recover the
original netlist as a part of a reverse-engineering effort. Although much of the format
of a bitstream is public, the correlation between bitstream bits and logic is not. Details
of how a bitstream is generated are proprietary. In fact, FPGA manufacturers have no
tools that can be used to recover a netlist from a bitstream. Given the sheer size of
modern FPGAs and the number of configuration bits involved, recovering an entire
design from a bitstream is unlikely, probably requiring the resources of a state actor. In
general, the bitstream generation process serves as a type of design obfuscation.

Spoofing
A special case of tampering, spoofing occurs when an outside agent replaces all or part
of an FPGA bitstream or microprocessor program with its own, either as a part of a
reverse engineering program or as an attempt to compromise the system or the
attached infrastructure.

Trojan Horse
To gain access into a system, an actor can attempt to insert its own logic into the
design. The goal can be to access data stored in the FPGA, obtain more knowledge of
the overall system, or even to hijack the system.

Potentially, malicious logic can be inserted into a production system, or the design
itself can be compromised during the development process.

Readback
Readback allows users to read out bitstream data from an FPGA. The readback
bitstream can be used to verify programming and for debugging purposes. The
readback bitstream differs from the configuration bitstream in two significant ways:

• It lacks header, footer, and other information needed for configuration.
• It contains additional information on all user memory elements (for example,

LUT RAM, SRL16, and block RAM) and potentially the current state of all internal
CLB and IOB registers.

While the readback bitstream can potentially be used to recreate the configuration
bitstream, there are easier ways to capture the configuration bitstream. It is this latter
characteristic that is of much greater concern from a security perspective, because
operational data can be recovered.

Side-Channel
In a side-channel attack, an actor attempts to use operational characteristics of the
design—for example, timing or power—to retrieve keys, learn how to insert faults, or
to gain insight into the design. See FPGA-Based Single Chip Cryptographic Solution for details.
[Ref 1]

http://www.xilinx.com

6 www.xilinx.com WP365 (v1.2) July 30, 2012

FPGAs as Secure Platforms

Fault Insertion
This type of attack attempts to cause a circuit to malfunction in an attempt to force the
circuit into a test or debug mode, an invalid state, or to output secret data by
introducing glitches (analogous to hitting a vending machine in just the right location
to cause it to dispense a can of soda). The actor operates the system outside its normal
design or environmental operating conditions by varying clock inputs, randomly
forcing inputs, or varying voltage and temperature. With an FPGA, this type of attack
can also include modifying bits within the configuration bitstream in an effort to affect
functionality.

This type of attack might be successful against a microprocessor-based system because
a glitch can cause steps in the code to be bypassed. Modern hardware design
techniques, however, such as completely defining all states and doing a thorough
glitch analysis, make this type of attack against FPGAs difficult to implement.

FPGAs as Secure Platforms
One of the keys to security is compartmentalization—separating confidential data
between various organizations to prevent any one person or entity from being able to
access all the information. By their very nature, FPGAs are a secure platform for design
because device manufacture is separated from end-application design by an original
equipment manufacturer (OEM), and end-product manufacture is handled separately.
This separation of paths is illustrated in Figure 1.

http://www.xilinx.com

FPGAs as Secure Platforms

WP365 (v1.2) July 30, 2012 www.xilinx.com 7

With an FPGA, therefore, separation of knowledge bases is intrinsic to the nature of
the device and its method of implementation:

• The device supplier handles the design and manufacture of the unprogrammed
silicon but does not have access to the end application.

• Conversely, the end-application designer does not have access to the details of
how the FPGA base device is designed, nor to its internal security structures. The
application design engineer sees only a software-abstracted view of the device.

• Product manufacturing can be given only an encrypted bitstream and a bill of
material (BOM), and therefore has knowledge neither of the end-application
design nor the FPGA design.

• Programming of the bitstream decryption key can be handled in a secure facility
separate from product manufacturing—for example, during final test by the OEM
or other trusted third party.

X-Ref Target - Figure 1

Figure 1: Separation of FPGA and End Application Design Paths

FPGA Silicon Design

GDSII
(to Fab)

Abstacted
View

FPGA Vendor

PROM Programming

Programmed
FPGA (In System)

Contract Manufacturing

Key and FPGA
Programming

Keyed
FPGA (In System)

Secure Facilty

WP365_01_032910

FPGA Design

Design
Database

OEM

D
Dat

Bitstream
(Encrypted)

Bitstream
Key

http://www.xilinx.com

8 www.xilinx.com WP365 (v1.2) July 30, 2012

Xilinx Security Solutions

In contrast, with a custom device, the end-application designer and the manufacturer
(fab) have complete details of the device structure and function. Additionally, a
custom device can be “de-lidded,” the process of chemically or mechanically
removing one layer at a time. Using this method, the entire design database can be
recovered. Performing the same process on an FPGA might recover the structure of
the device, but in the unprogrammed state. No customer data is compromised.

Xilinx Security Solutions
Xilinx programmable devices offer a spectrum of security solutions to designers,
ranging from Device DNA and bitstream encryption to Hashed Message
Authentication (HMAC) bitstream authentication and specialized security features.

Bitstream Encryption
Bitstream encryption, first introduced by Xilinx on a production level with Virtex®-II
FPGAs, serves both to prevent device cloning and to protect the confidentiality of the
design data. Each Virtex-4, Virtex-5, and Virtex-6 device, as well as select Spartan®-6
devices, have an on-chip advanced encryption standard (AES) decryption engine to
support encrypted bitstreams.

AES is a FIPS-approved cryptographic algorithm specified by the NIST publication
Advanced Encryption Standard (FIPS-197). [Ref 3] AES specifies a symmetric block
cipher using 128-, 192-, and 256-bit keys to encrypt and decrypt data in 128-bit blocks
(AES-128, AES-192, and AES-256 respectively). For a 256-bit key, there are 1.1 × 1077
possible key combinations.

The Xilinx bitstream encryption system consists of two parts: software-based
bitstream encryption and on-chip bitstream decryption with dedicated memory for
storing the 256-bit encryption key. Using the Xilinx ISE® software, the user generates
both the encryption key and the encrypted bitstream.

These devices store the encryption key internally in either dedicated RAM, backed up
by a small externally connected battery, or in one-time-programmable (OTP) fuses (see
eFUSE). The encryption key can only be programmed into the device via the JTAG
port. During configuration, the device performs the reverse operation, decrypting the
incoming bitstream using the FPGA AES decryption engine.

The on-chip AES decryption engine cannot be used for any purpose other than
bitstream decryption—that is, the AES decryption logic is not available to the user
design and cannot be used to decrypt any data other than the configuration bitstream.

As an added layer of security, an encrypted bitstream cannot be loaded to an FPGA
previously loaded with an unencrypted bitstream without first initializing a complete
programming cycle, which first clears the contents of the configuration memory.
Similarly, loading an unencrypted bitstream to an FPGA previously configured with
an encrypted bitstream requires a complete configuration. This requirement to clear
the configuration memory before programming helps thwart reverse engineering
attacks.

http://www.xilinx.com

Xilinx Security Solutions

WP365 (v1.2) July 30, 2012 www.xilinx.com 9

Key Storage
Essential to supporting encrypted bitstreams is a secure method of storing the key on-
chip. Virtex-4, Virtex-5, and Virtex-6 devices, along with certain Spartan-6 devices,
support storage of a 256-bit key in battery-backed RAM. Virtex-6 devices and certain
Spartan-6 devices provide the additional option of non-volatile key storage in OTP
fuses (eFUSEs).

Battery-Backed RAM
The 256-bit key is stored in volatile on-chip memory cells (battery-backed RAM). This
special memory must receive continuous power from a separate battery supply to
retain its contents. During normal operation, these memory cells are powered by an
auxiliary voltage input to avoid draining this battery. An application can take
advantage of this need for external power by cutting the power to both the FPGA and
the key storage if tampering or other unauthorized access is attempted (see Keyclear).

Moreover, an additional powerful key storage security feature exists in Xilinx devices:
Any attempted access or write to the battery-backed RAM causes its contents to be
cleared and the entire configuration of the FPGA erased prior to access enable.

eFUSE
Virtex-6 FPGAs and select Spartan-6(1) devices have the following eFUSE registers
composed of OTP fuses:

• FUSE_KEY for storage of the 256-bit key for AES encryption
• FUSE_USER for a 32-bit user-defined code (Virtex-6 devices only)
• FUSE_ID for storage of the 57-bit Device DNA ID (All Virtex-6 and Spartan-6

devices)
• FUSE_CNTL for storage of the 32 control bits

These fuses allow a user to securely store the bitstream decryption key without the
need of battery-backed RAM and its associated battery. See Device DNA for further
information.

The OTP eFUSE links are permanently programmed via an external voltage supply
and can be used in applications where the use of battery-backed RAM is not desired.
Moreover, all eFUSE cells are duplicated for enhanced key integrity.

Authentication
Virtex-6 FPGAs are the first (and only) programmable devices to offer
cryptographically strong bitstream authentication, preventing spoofing and Trojan-
horse attacks. An on-chip bitstream keyed-HMAC algorithm implemented in
hardware provides additional security beyond that of using AES bitstream encryption
alone. Without knowledge of the AES and HMAC keys, the bitstream cannot be
loaded, modified, or cloned.

A hashed message authentication code (HMAC), as defined in the NIST publication
Keyed-Hash Message Authentication Code (FIPS-198) [Ref 5], is used for message
authentication. Using the HMAC algorithm, a message sender produces a message
authentication code (MAC) using the secret key and the message. The receiver
computes the MAC on the received message using the same key and compares the

1. Spartan-6 LX75, LX75T, LX100, LX100T, LX150, and LX150T devices.

http://www.xilinx.com

10 www.xilinx.com WP365 (v1.2) July 30, 2012

Xilinx Security Solutions

results. If the two values match, the message has been authenticated. AES provides
strong design confidentiality to protect the design from copying or reverse
engineering, while HMAC provides assurance that the bitstream provided for the
configuration of the FPGA has not been altered. Any bitstream tampering, including
single bit flips, are detected.

The Virtex-6 FPGA HMAC authentication system consists of an HMAC component in
the ISE software and a hardware component integrated into every Virtex-6 FPGA.
Both components generate a 256-bit MAC based on a key and the secure hash algorithm
(SHA256), shown in Figure 2.

During bitstream generation, BitGen generates a MAC that is embedded in the AES-
encrypted bitstream along with the HMAC key. During configuration, the
HMAC/SHA256 engine in the FPGA calculates the MAC from the hardware AES-
decrypted data and compares it with the MAC provided in the encrypted bitstream, as
shown in Figure 3.

If the two MACs match, the configuration completes and enters the startup cycle. If
the two MACs do not match and fallback is enabled, the fallback bitstream is loaded
after the entire device configuration is cleared. If fallback is not enabled, the
configuration logic disables the configuration interface, blocking any access to the
FPGA.

X-Ref Target - Figure 2

Figure 2: Virtex-6 FPGA HMAC Authentication System

Hash Algorithm
(e.g., SHA-256)

Message Digest (MAC)

WP365_02_060910

e[Message | Message Digest | hmac_key]
Encryption Algorithm

(e.g., AES-256)

Message | Message Digest | hmac_key

Encryption Key

Message

hmac_key

X-Ref Target - Figure 3

Figure 3: Virtex-6 FPGA HMAC/SHA256 Decryption and Comparison

Configuration
Memory

Hash Algorithm Comparator

hmac_key | Message | Digest

Decryption Algorithm
(e.g., AES-256)Encryption key

e[hmac_key | Message | Digest]

WP365_03_060910

PASS? Disable Startup
No

Enable Startup

Yes

http://www.xilinx.com

Xilinx Security Solutions

WP365 (v1.2) July 30, 2012 www.xilinx.com 11

Additional Security Features
Xilinx FPGAs include additional security features and structures that are used in
combination with the security methods described here.

Readback/JTAG Disable
All Xilinx devices with encryption (Virtex-4, Virtex-5, Virtex-6, and Spartan-6 devices)
have an SEU-hardened readback disabling circuitry. When encrypted configuration is
enabled, triple-redundant logic disables FPGA readback via all external interfaces
after the device is loaded with an encrypted design. In addition, this feature blocks
reads of the configuration memory via the JTAG interface to hinder reverse
engineering efforts.

Readback CRC
Virtex-5, Virtex-6, and Spartan-6 devices include a feature that performs continuous
readback of configuration data in the background of a user design. This feature is
aimed at simplifying the detection of changes in the configuration memory—for
example, due to SEUs that can cause a configuration memory bit to flip. This
capability can be used in conjunction with the FRAME ECC feature for advanced
operations such as SEU corrections. This feature can also be used to detect tampering
and side-channel attacks.

System Monitor
The draft standard FIPS 140-3 ([Ref 2] points to the published FIPS 140-2 revision)
proposes temperature and voltage monitoring for the highest level of security
(Security Level 5) as a means of detecting side-channel attacks.

Virtex-5 and Virtex-6 FPGAs contain a single System Monitor block, built around a
10-bit, 200 ks/s analog-to-digital converter (ADC). When combined with a number of
on-chip sensors, the ADC is used to measure FPGA physical operating parameters
such as on-chip power supply voltages and die temperatures.

Keyclear
The start-up block in Virtex-5, Virtex-6, and Spartan-6 devices provides users with an
internal signal that, when asserted, clears the AES decryption key from the battery-
backed RAM. This capability can be part of a response to a tamper event.

IPROG
IPROG is an internal command sent through the ICAP interface in Virtex-6 and
Spartan-6 devices that clears the FPGA configuration memory, all flip-flop contents,
and key expansion memory—but not the key itself. This command effectively clears
configuration memory and can be combined with the KEYCLEAR signal in response
to tampering.

BSCAN
The BSCAN primitive allows user logic to access the JTAG/boundary-scan signals in
Virtex-4, Virtex-5, Virtex-6, and Spartan-6 devices. Through instantiations of this
block, the designer can construct custom logic to monitor the activity on the JTAG port
as a tamper-detection mechanism.

http://www.xilinx.com

12 www.xilinx.com WP365 (v1.2) July 30, 2012

Conclusion

Device DNA
To prevent device cloning, Virtex-6 and Spartan-6 FPGAs contain an embedded,
unique device identifier (Device DNA). This unique 57-bit identifier (analogous to a
serial number) is nonvolatile and permanently programmed into the FPGA in the
FUSE_ID eFUSE register. Because this identifier is programmed into OTP eFUSEs at
device final test, it is tamper resistant.

First introduced with the Spartan-3A FPGA, the Device DNA number is used with a
customer-defined security algorithm in user logic to generate an active
value/checksum. Typically, this value is compared to a pre-stored check value to
determine whether design functionality can proceed.

While Device DNA prevents cloning, it does not protect against spoofing per se.
However, the custom-designed security function can be constructed to include a
dead-man switch output, which can be used elsewhere in the system either to prevent
certain other functions from operating or to detect tampering.

Conclusion
Table 1 summarizes the wide range of robust security features offered in Xilinx
FPGAs. These features help customers build designs that are not only secure, but
resistant to cloning and tampering as well.

Table 1: Xilinx FPGA Family Security Features

Xilinx FPGA Family

Virtex-4 Virtex-5 Virtex-6 Spartan-6

AES 256-bit encryption
(volatile key – battery-backed
RAM)

Yes Yes Yes

LX75/T,
LX100/T,
LX150/T

only

AES 256-bit encryption
(nonvolatile key – fuses) No No Yes

LX75/T,
LX100/T,
LX150/T

only

Device DNA No No Yes Yes

HMAC bitstream authentication No No Yes No

Hardened readback-disabling
circuitry Yes Yes Yes Yes

Internal key clear No Yes Yes Yes

Internal configuration memory
clearing (IPROG) No Yes Yes Yes

On-chip temperature and voltage
monitoring No Yes Yes No

http://www.xilinx.com

References

WP365 (v1.2) July 30, 2012 www.xilinx.com 13

These capabilities can be combined in response to various security needs:

• Confidentiality plus anti-cloning protection: AES
• Confidentiality, authentication, plus anti-overbuilding/cloning protection: AES

plus HMAC authentication
• Confidentiality, authentication, plus anti-overbuilding/cloning and anti-spoofing

protection: HMAC authentication eFUSE key storage
• Confidentiality, anti-overbuilding/cloning protection, plus long shelf life: AES

with eFUSE key storage
• Confidentiality and anti-cloning protection for devices without eFuse: Device

DNA

Working with an FPGA vendor who understands today's security threats and has
experience in secure design is essential.

References
1. M. McLean and J. Moore, FPGA-Based Single Chip Cryptographic Solution, Military

Embedded Systems, 2007.
http://www.mil-embedded.com/articles/id/?2069

2. FIPS-140-2, Security Requirements for Cryptographic Modules, Federal Information Processing
Standards, U.S. National Institute of Standards and Technology.
http://www.nist.gov/itl/upload/fips1402.pdf

3. FIPS-197, Advanced Encryption Standard, Federal Information Processing Standards,
U.S. National Institute of Standards and Technology.
http://www.nist.gov/itl/upload/fips-197.pdf

4. FIPS-180-3, Secure Hash Signature Standard, Federal Information Processing Standards,
U.S. National Institute of Standards and Technology.
http://www.nist.gov/itl/upload/fips180-3_final.pdf

5. FIPS-198-1, Keyed-Hash Message Authentication Code, Federal Information Processing
Standards, U.S. National Institute of Standards and Technology.
http://www.nist.gov/itl/upload/FIPS-198-1_final.pdf

Further Related Information
1. S. Trimberger, Trusted Design in FPGAs, Design Automation Conference, June 2007.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.6684&rep=rep1&type=pdf

2. Soviet Union Impounds and Copies B-29, National Museum of the USAF.
Retrieved: 31 January 2010.
http://www.nationalmuseum.af.mil/factsheets/factsheet.asp?id=1852

3. Former Gaming Official Sent to Jail for Slot Scam, Las Vegas Review Journal, 10 January 1998.
Retrieved: 31 January 2010.
http://www.reviewjournal.com/lvrj_home/1998/Jan-10-Sat-1998/news/6745681.html

4. S. P. Skorobogatov, Low Temperature Data Remanence in Static RAM, Technical Report 536,
University of Cambridge Computer Laboratory, June 2002.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf

5. Managing the Risks of Counterfeiting in the Information Technology Industry, KPMG
International, 2005.
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf

6. UG360, Virtex-6 FPGA Configuration, Xilinx user guide.
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf

http://www.reviewjournal.com/lvrj_home/1998/Jan-10-Sat-1998/news/6745681.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.nist.gov/itl/upload/fips1402.pdf
http://www.xilinx.com
http://www.nist.gov/itl/upload/fips-197.pdf
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf
http://www.nationalmuseum.af.mil/factsheets/factsheet.asp?id=1852
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.6684&rep=rep1&type=pdf
http://www.nist.gov/itl/upload/fips180-3_final.pdf
http://www.nist.gov/itl/upload/FIPS-198-1_final.pdf
http://www.mil-embedded.com/articles/id/?2069

14 www.xilinx.com WP365 (v1.2) July 30, 2012

Revision History

7. WP345, Slash Your Total Cost by up to 50% with Spartan-3 Generation FPGAs, Xilinx white
paper.
http://www.xilinx.com/support/documentation/white_papers/wp345.pdf

8. UG370, Virtex-6 FPGA System Monitor, Xilinx user guide.
http://www.xilinx.com/support/documentation/user_guides/ug370.pdf

9. Saar Drimer, Volatile FPGA Design Security – A Survey, v0.96, April 2008.
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

10. Saar Drimer, Security for Volatile FPGAs, University of Cambridge Computer Laboratory,
November 2009.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-763.pdf

11. WP267, Advanced Security Schemes for Spartan-3A/3AN/3A DSP FPGAs, Xilinx white paper.
http://www.xilinx.com/support/documentation/white_papers/wp267.pdf

Revision History
The following table shows the revision history for this document:

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use
of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available
“AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS,
EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
(2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory
of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental,
or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability
for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Date Version Description of Revisions

06/29/10 1.0 Initial Xilinx release.

07/05/12 1.1 Added device types in eFUSE section.

07/30/12 1.2 Updated eFUSE and Device DNA.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-763.pdf
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf
http://www.xilinx.com/support/documentation/white_papers/wp345.pdf
http://www.xilinx.com/support/documentation/user_guides/ug370.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/white_papers/wp267.pdf
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

	Solving Today's Design Security Concerns
	Introduction
	The Threats
	Reverse Engineering
	Cloning
	Overbuilding
	Tampering

	The Weaknesses
	Complacency
	Incomplete Security Measures
	Back Doors
	Design Defects
	Device Defects
	Single-Event Upsets

	Attacking an FPGA Design
	Bitstream Decoding
	Spoofing
	Trojan Horse
	Readback
	Side-Channel
	Fault Insertion

	FPGAs as Secure Platforms
	Xilinx Security Solutions
	Bitstream Encryption
	Key Storage
	Authentication
	Additional Security Features

	Conclusion
	References
	Further Related Information
	Revision History
	Notice of Disclaimer

