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While design security is often thought of in terms of
protecting intellectual property (IP), the potential
losses extend beyond just the financial. With the
expansion of the use of programmable logic beyond
commercial markets to avionic and military
applications, design security takes on the additional
aspects of safety and national security.

Solutions for protecting application data during
transmission and storage are well known, but much
less attention has been paid to FPGA design
security—that is, protecting the FPGA configuration
data.

This white paper describes the various threats to
design security and the solutions offered by modern
FPGAs.
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Introduction

Introduction
Today's global marketplace has opened up not only new opportunities but new 
threats as well. These threats range from counterfeiting to espionage and are faced by 
corporations and governments alike. These threats can have far-reaching 
consequences well beyond the financial well-being of a corporation; they can also 
impact personal safety.

The goals of those making these threats can range from purely financial—a simple 
desire to reap profits without making the investment in the initial design effort—to 
more sinister aspects of governments attempting both to learn the capabilities of 
others’ systems and to use the knowledge gained to kick-start their own development 
projects. Given their growing sophistication, there is also the potential of terrorists 
attempting to exploit weaknesses in design security.

With our global market, commercial products can be obtained easily, either by 
legitimate means or simply by theft. Military devices can be obtained through 
espionage, by the capture of equipment on the battlefield, or even when smart 
ordinance fails to detonate. This ease of access means that everyone must take design 
security seriously.

Moreover, with the ever-expanding usage of FPGAs in products and systems of all 
kinds, FPGAs often form the core of any system. This rise in both the usage and 
importance of FPGAs in a system make protecting the IP contained in FPGAs as 
important as protecting the data processed by the FPGA.

Note: There is an additional aspect to design security that extends beyond protecting the 
IP contained in an FPGA: protecting the data being processed by the FPGA. This aspect of 
design security is beyond the scope of this white paper. For a discussion of secure design 
using Xilinx® FPGAs, see FPGA-Based Single Chip Cryptographic Solution. [Ref 1]

As awareness of security threats has grown, the security community in the U.S. has 
responded with a set of policies and standards that are often the driving force behind 
design security:

• DoD IA – The Department of Defense (DoD) information assurance (IA)—or, 
more properly, cyber, identity, and information assurance (CIIA)—is a set of policies, 
standards, and practices set forth to protect and defend defense information and 
information systems. One of the goals of the strategy is to protect “trusted data 
and platforms” and applies to hardware.

• DoD/DoDD 5200 – DoD Directive 5200.1-M, Acquisition Systems Protection 
Program, is a manual prescribing standards, criteria, and methodologies to protect 
against loss and unauthorized disclosure of essential program information, 
technologies, and/or systems (EPITS). It is this directive that drives the development 
of anti-tamper capabilities for DoD programs.

• FIPS – Federal Information Processing Standards (FIPS) are issued by the 
National Institute of Standards and Technology (NIST) for use by all non-defense 
government agencies and contractors. [Ref 2][Ref 3][Ref 4][Ref 5]

The methods and solutions covered by this white paper are critical for meeting the 
requirements of these initiatives.
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The Threats
There are a range of threats to design security, each threat with its own implications. 
Some are threats to the financial interests of a company, while other can threaten 
personal or even national security.

Reverse Engineering
Taking an existing product, third parties can probe a design by looking at the layout, 
the devices used, downloading the firmware, and analyzing the interaction between 
devices. Using this information, the offenders hope to reconstruct the design, with the 
goal of using that information to produce their own competing products or assist their 
future product development. Governments can use this information to either develop 
effective countermeasures or to produce similar equipment.

Cloning
In cloning, the actors (often a criminal enterprise) do not attempt to fully understand 
and deconstruct the design. The goal is simply to build copies of an existing product, 
essentially a counterfeit that can then be sold for a greater profit than had the actor 
gone through the time and expense of product development and marketing. Since the 
offender is less likely to spend money on quality components and quality assurance, 
the resulting products can harm the corporate image as well as its finances.

A more severe impact occurs when cloning is used to produce counterfeit products 
destined for high-reliability applications—for example, in aviation. The intent might 
not necessarily be sinister, but a low-quality product can impact flight safety.

Overbuilding
The easiest form of design theft is overbuilding. With the growth in outsourcing, an 
original equipment manufacturer (OEM) often relies on a network of off-shore 
contractors to manufacture its products. As a consequence, an unscrupulous 
subcontractor could build extra units beyond that ordered by the OEM. Although 
legally this is a form of counterfeiting, the units produced are identical to the originals, 
making discovery difficult.

Tampering
When an outside agent attempts to gain unauthorized access to an electronic system, 
it is referred to as tampering. Tampering can either be part of a reverse engineering 
program, or it can have a goal that is malicious or criminal in nature. For example, an 
actor can try to extract operating data or firmware, or can try to modify firmware in a 
system in an attempt to compromise or shut down the system.
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The Weaknesses
There are several ways that systems can be vulnerable to external attacks.

Complacency
Probably the largest vulnerability is simple complacency on the part of design teams 
and companies. Companies can fail to consider design security due either to a lack of 
time or to the belief that legal protection should be sufficient. As a result, design 
security is not considered, and only minimal steps are taken to protect the company's 
valuable intellectual property.

Complacency can be fought through education and the recognition that, while legal 
protection exists, it is a long and expensive route, necessarily undertaken long after 
the damage has been done.

Incomplete Security Measures
Another area of vulnerability is incomplete security measures. For example, a 
company could implement an anti-tamper detection scheme in a system containing an 
FPGA to alert end customers to attempted tampering—but if the security measures do 
not extend to encrypting FPGA bitstreams, then the system is still vulnerable to 
reverse engineering threats.

Moreover, attention must be paid not just at the device or FPGA level, but at the board 
and system levels as well, considering potential threats at each level. Clearly, designs 
need to be thoroughly reviewed to ensure that all aspects of design security are 
covered.

Back Doors
Structures implemented in a design to aid in debug can leave security holes. 
Analogous to software systems that leave a back door to ease the access of system 
administrators, hardware design can have holes as well. For example, if left in the 
design, device debug modes/cores could be used to bypass the normal security 
and/or anti-tampering measures. While useful during the design phase, such back 
doors must be removed from the design before final production.

Design Defects
Defects in the customer design can leave security holes. For example, illegal/untested 
states that exist in the design can render it vulnerable. As a result, a design should be 
thoroughly tested with illegal states examined before releasing the final design.

Device Defects
Similar to design defects, a device could have manufacturing defects that make it 
vulnerable to an attack. Selecting vendors with thorough testing schemes and 
advanced quality assurance procedures can greatly minimize this risk.

Single-Event Upsets
Single-event upsets (SEUs) occur when device memory structures have their states 
altered due to the impact of high-energy neutrons. Although a remote possibility, an 
SEU can alter the functionality of a device, potentially compromising security 
structures incorporated into the device. Implementing SEU mitigation techniques not 
only neutralizes this possibility but increases system reliability.
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Attacking an FPGA Design
Bitstream Decoding

Once an actor has recovered a bitstream, he can attempt to decode it to recover the 
original netlist as a part of a reverse-engineering effort. Although much of the format 
of a bitstream is public, the correlation between bitstream bits and logic is not. Details 
of how a bitstream is generated are proprietary. In fact, FPGA manufacturers have no 
tools that can be used to recover a netlist from a bitstream. Given the sheer size of 
modern FPGAs and the number of configuration bits involved, recovering an entire 
design from a bitstream is unlikely, probably requiring the resources of a state actor. In 
general, the bitstream generation process serves as a type of design obfuscation.

Spoofing
A special case of tampering, spoofing occurs when an outside agent replaces all or part 
of an FPGA bitstream or microprocessor program with its own, either as a part of a 
reverse engineering program or as an attempt to compromise the system or the 
attached infrastructure.

Trojan Horse
To gain access into a system, an actor can attempt to insert its own logic into the 
design. The goal can be to access data stored in the FPGA, obtain more knowledge of 
the overall system, or even to hijack the system.

Potentially, malicious logic can be inserted into a production system, or the design 
itself can be compromised during the development process.

Readback
Readback allows users to read out bitstream data from an FPGA. The readback 
bitstream can be used to verify programming and for debugging purposes. The 
readback bitstream differs from the configuration bitstream in two significant ways:

• It lacks header, footer, and other information needed for configuration.
• It contains additional information on all user memory elements (for example, 

LUT RAM, SRL16, and block RAM) and potentially the current state of all internal 
CLB and IOB registers.

While the readback bitstream can potentially be used to recreate the configuration 
bitstream, there are easier ways to capture the configuration bitstream. It is this latter 
characteristic that is of much greater concern from a security perspective, because 
operational data can be recovered. 

Side-Channel
In a side-channel attack, an actor attempts to use operational characteristics of the 
design—for example, timing or power—to retrieve keys, learn how to insert faults, or 
to gain insight into the design. See FPGA-Based Single Chip Cryptographic Solution for details. 
[Ref 1]
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Fault Insertion
This type of attack attempts to cause a circuit to malfunction in an attempt to force the 
circuit into a test or debug mode, an invalid state, or to output secret data by 
introducing glitches (analogous to hitting a vending machine in just the right location 
to cause it to dispense a can of soda). The actor operates the system outside its normal 
design or environmental operating conditions by varying clock inputs, randomly 
forcing inputs, or varying voltage and temperature. With an FPGA, this type of attack 
can also include modifying bits within the configuration bitstream in an effort to affect 
functionality.

This type of attack might be successful against a microprocessor-based system because 
a glitch can cause steps in the code to be bypassed. Modern hardware design 
techniques, however, such as completely defining all states and doing a thorough 
glitch analysis, make this type of attack against FPGAs difficult to implement.

FPGAs as Secure Platforms
One of the keys to security is compartmentalization—separating confidential data 
between various organizations to prevent any one person or entity from being able to 
access all the information. By their very nature, FPGAs are a secure platform for design 
because device manufacture is separated from end-application design by an original 
equipment manufacturer (OEM), and end-product manufacture is handled separately. 
This separation of paths is illustrated in Figure 1.
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With an FPGA, therefore, separation of knowledge bases is intrinsic to the nature of 
the device and its method of implementation:

• The device supplier handles the design and manufacture of the unprogrammed 
silicon but does not have access to the end application.

• Conversely, the end-application designer does not have access to the details of 
how the FPGA base device is designed, nor to its internal security structures. The 
application design engineer sees only a software-abstracted view of the device.

• Product manufacturing can be given only an encrypted bitstream and a bill of 
material (BOM), and therefore has knowledge neither of the end-application 
design nor the FPGA design.

• Programming of the bitstream decryption key can be handled in a secure facility 
separate from product manufacturing—for example, during final test by the OEM 
or other trusted third party.

X-Ref Target - Figure 1

Figure 1: Separation of FPGA and End Application Design Paths
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Xilinx Security Solutions

In contrast, with a custom device, the end-application designer and the manufacturer 
(fab) have complete details of the device structure and function. Additionally, a 
custom device can be “de-lidded,” the process of chemically or mechanically 
removing one layer at a time. Using this method, the entire design database can be 
recovered. Performing the same process on an FPGA might recover the structure of 
the device, but in the unprogrammed state. No customer data is compromised.

Xilinx Security Solutions
Xilinx programmable devices offer a spectrum of security solutions to designers, 
ranging from Device DNA and bitstream encryption to Hashed Message 
Authentication (HMAC) bitstream authentication and specialized security features.

Bitstream Encryption
Bitstream encryption, first introduced by Xilinx on a production level with Virtex®-II 
FPGAs, serves both to prevent device cloning and to protect the confidentiality of the 
design data. Each Virtex-4, Virtex-5, and Virtex-6 device, as well as select Spartan®-6 
devices, have an on-chip advanced encryption standard (AES) decryption engine to 
support encrypted bitstreams.

AES is a FIPS-approved cryptographic algorithm specified by the NIST publication 
Advanced Encryption Standard (FIPS-197). [Ref 3] AES specifies a symmetric block 
cipher using 128-, 192-, and 256-bit keys to encrypt and decrypt data in 128-bit blocks 
(AES-128, AES-192, and AES-256 respectively). For a 256-bit key, there are 1.1 × 1077 
possible key combinations.

The Xilinx bitstream encryption system consists of two parts: software-based 
bitstream encryption and on-chip bitstream decryption with dedicated memory for 
storing the 256-bit encryption key. Using the Xilinx ISE® software, the user generates 
both the encryption key and the encrypted bitstream.

These devices store the encryption key internally in either dedicated RAM, backed up 
by a small externally connected battery, or in one-time-programmable (OTP) fuses (see 
eFUSE). The encryption key can only be programmed into the device via the JTAG 
port. During configuration, the device performs the reverse operation, decrypting the 
incoming bitstream using the FPGA AES decryption engine. 

The on-chip AES decryption engine cannot be used for any purpose other than 
bitstream decryption—that is, the AES decryption logic is not available to the user 
design and cannot be used to decrypt any data other than the configuration bitstream.

As an added layer of security, an encrypted bitstream cannot be loaded to an FPGA 
previously loaded with an unencrypted bitstream without first initializing a complete 
programming cycle, which first clears the contents of the configuration memory. 
Similarly, loading an unencrypted bitstream to an FPGA previously configured with 
an encrypted bitstream requires a complete configuration. This requirement to clear 
the configuration memory before programming helps thwart reverse engineering 
attacks.
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Key Storage
Essential to supporting encrypted bitstreams is a secure method of storing the key on-
chip. Virtex-4, Virtex-5, and Virtex-6 devices, along with certain Spartan-6 devices, 
support storage of a 256-bit key in battery-backed RAM. Virtex-6 devices and certain 
Spartan-6 devices provide the additional option of non-volatile key storage in OTP 
fuses (eFUSEs).

Battery-Backed RAM
The 256-bit key is stored in volatile on-chip memory cells (battery-backed RAM). This 
special memory must receive continuous power from a separate battery supply to 
retain its contents. During normal operation, these memory cells are powered by an 
auxiliary voltage input to avoid draining this battery. An application can take 
advantage of this need for external power by cutting the power to both the FPGA and 
the key storage if tampering or other unauthorized access is attempted (see Keyclear).

Moreover, an additional powerful key storage security feature exists in Xilinx devices: 
Any attempted access or write to the battery-backed RAM causes its contents to be 
cleared and the entire configuration of the FPGA erased prior to access enable.

eFUSE
Virtex-6 FPGAs and select Spartan-6(1) devices have the following eFUSE registers 
composed of OTP fuses: 

• FUSE_KEY for storage of the 256-bit key for AES encryption
• FUSE_USER for a 32-bit user-defined code (Virtex-6 devices only)
• FUSE_ID for storage of the 57-bit Device DNA ID (All Virtex-6 and Spartan-6 

devices)
• FUSE_CNTL for storage of the 32 control bits

These fuses allow a user to securely store the bitstream decryption key without the 
need of battery-backed RAM and its associated battery. See Device DNA for further 
information.

The OTP eFUSE links are permanently programmed via an external voltage supply 
and can be used in applications where the use of battery-backed RAM is not desired. 
Moreover, all eFUSE cells are duplicated for enhanced key integrity.

Authentication
Virtex-6 FPGAs are the first (and only) programmable devices to offer 
cryptographically strong bitstream authentication, preventing spoofing and Trojan-
horse attacks. An on-chip bitstream keyed-HMAC algorithm implemented in 
hardware provides additional security beyond that of using AES bitstream encryption 
alone. Without knowledge of the AES and HMAC keys, the bitstream cannot be 
loaded, modified, or cloned.

A hashed message authentication code (HMAC), as defined in the NIST publication 
Keyed-Hash Message Authentication Code (FIPS-198) [Ref 5], is used for message 
authentication. Using the HMAC algorithm, a message sender produces a message 
authentication code (MAC) using the secret key and the message. The receiver 
computes the MAC on the received message using the same key and compares the 

1.  Spartan-6 LX75, LX75T, LX100, LX100T, LX150, and LX150T devices.
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results. If the two values match, the message has been authenticated. AES provides 
strong design confidentiality to protect the design from copying or reverse 
engineering, while HMAC provides assurance that the bitstream provided for the 
configuration of the FPGA has not been altered. Any bitstream tampering, including 
single bit flips, are detected.

The Virtex-6 FPGA HMAC authentication system consists of an HMAC component in 
the ISE software and a hardware component integrated into every Virtex-6 FPGA. 
Both components generate a 256-bit MAC based on a key and the secure hash algorithm 
(SHA256), shown in Figure 2.

During bitstream generation, BitGen generates a MAC that is embedded in the AES-
encrypted bitstream along with the HMAC key. During configuration, the 
HMAC/SHA256 engine in the FPGA calculates the MAC from the hardware AES-
decrypted data and compares it with the MAC provided in the encrypted bitstream, as 
shown in Figure 3.

If the two MACs match, the configuration completes and enters the startup cycle. If 
the two MACs do not match and fallback is enabled, the fallback bitstream is loaded 
after the entire device configuration is cleared. If fallback is not enabled, the 
configuration logic disables the configuration interface, blocking any access to the 
FPGA.

X-Ref Target - Figure 2

Figure 2: Virtex-6 FPGA HMAC Authentication System
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Figure 3: Virtex-6 FPGA HMAC/SHA256 Decryption and Comparison
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Additional Security Features
Xilinx FPGAs include additional security features and structures that are used in 
combination with the security methods described here.

Readback/JTAG Disable
All Xilinx devices with encryption (Virtex-4, Virtex-5, Virtex-6, and Spartan-6 devices) 
have an SEU-hardened readback disabling circuitry. When encrypted configuration is 
enabled, triple-redundant logic disables FPGA readback via all external interfaces 
after the device is loaded with an encrypted design. In addition, this feature blocks 
reads of the configuration memory via the JTAG interface to hinder reverse 
engineering efforts.

Readback CRC
Virtex-5, Virtex-6, and Spartan-6 devices include a feature that performs continuous 
readback of configuration data in the background of a user design. This feature is 
aimed at simplifying the detection of changes in the configuration memory—for 
example, due to SEUs that can cause a configuration memory bit to flip. This 
capability can be used in conjunction with the FRAME ECC feature for advanced 
operations such as SEU corrections. This feature can also be used to detect tampering 
and side-channel attacks.

System Monitor
The draft standard FIPS 140-3 ([Ref 2] points to the published FIPS 140-2 revision) 
proposes temperature and voltage monitoring for the highest level of security 
(Security Level 5) as a means of detecting side-channel attacks.

Virtex-5 and Virtex-6 FPGAs contain a single System Monitor block, built around a 
10-bit, 200 ks/s analog-to-digital converter (ADC). When combined with a number of 
on-chip sensors, the ADC is used to measure FPGA physical operating parameters 
such as on-chip power supply voltages and die temperatures.

Keyclear
The start-up block in Virtex-5, Virtex-6, and Spartan-6 devices provides users with an 
internal signal that, when asserted, clears the AES decryption key from the battery-
backed RAM. This capability can be part of a response to a tamper event.

IPROG
IPROG is an internal command sent through the ICAP interface in Virtex-6 and 
Spartan-6 devices that clears the FPGA configuration memory, all flip-flop contents, 
and key expansion memory—but not the key itself. This command effectively clears 
configuration memory and can be combined with the KEYCLEAR signal in response 
to tampering.

BSCAN
The BSCAN primitive allows user logic to access the JTAG/boundary-scan signals in 
Virtex-4, Virtex-5, Virtex-6, and Spartan-6 devices. Through instantiations of this 
block, the designer can construct custom logic to monitor the activity on the JTAG port 
as a tamper-detection mechanism.
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Device DNA
To prevent device cloning, Virtex-6 and Spartan-6 FPGAs contain an embedded, 
unique device identifier (Device DNA). This unique 57-bit identifier (analogous to a 
serial number) is nonvolatile and permanently programmed into the FPGA in the 
FUSE_ID eFUSE register. Because this identifier is programmed into OTP eFUSEs at 
device final test, it is tamper resistant.

First introduced with the Spartan-3A FPGA, the Device DNA number is used with a 
customer-defined security algorithm in user logic to generate an active 
value/checksum. Typically, this value is compared to a pre-stored check value to 
determine whether design functionality can proceed.

While Device DNA prevents cloning, it does not protect against spoofing per se. 
However, the custom-designed security function can be constructed to include a 
dead-man switch output, which can be used elsewhere in the system either to prevent 
certain other functions from operating or to detect tampering.

Conclusion
Table 1 summarizes the wide range of robust security features offered in Xilinx 
FPGAs. These features help customers build designs that are not only secure, but 
resistant to cloning and tampering as well.

Table 1: Xilinx FPGA Family Security Features

Xilinx FPGA Family

Virtex-4 Virtex-5 Virtex-6 Spartan-6

AES 256-bit encryption 
(volatile key – battery-backed 
RAM)

Yes Yes Yes

LX75/T, 
LX100/T, 
LX150/T 

only

AES 256-bit encryption 
(nonvolatile key – fuses) No No Yes

LX75/T, 
LX100/T, 
LX150/T 

only

Device DNA No No Yes Yes

HMAC bitstream authentication No No Yes No

Hardened readback-disabling 
circuitry Yes Yes Yes Yes

Internal key clear No Yes Yes Yes

Internal configuration memory 
clearing (IPROG) No Yes Yes Yes

On-chip temperature and voltage 
monitoring No Yes Yes No
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These capabilities can be combined in response to various security needs:

• Confidentiality plus anti-cloning protection: AES
• Confidentiality, authentication, plus anti-overbuilding/cloning protection: AES 

plus HMAC authentication
• Confidentiality, authentication, plus anti-overbuilding/cloning and anti-spoofing 

protection: HMAC authentication eFUSE key storage
• Confidentiality, anti-overbuilding/cloning protection, plus long shelf life: AES 

with eFUSE key storage
• Confidentiality and anti-cloning protection for devices without eFuse: Device 

DNA

Working with an FPGA vendor who understands today's security threats and has 
experience in secure design is essential.
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